

FY2002 UNIVERSITY SOFTWARE INITIATIVE PROPOSAL

FOR THE

NASA SOFTWARE IV&V FACILITY

Initiative Title: Sensitivity of Software Reliability to Operational Profile
Errors: Architecture-Based Approach

Initiative ID: Project 10000559, Task 24g, Award 1000625GR

September 2002 deliverable:

Report on

Application of the methodology for uncertainty analysis on the case studies

PI: Katerina Goseva – Popstojanova

Student: Sunil Kumar Kamavaram

LANE Department of Computer Science and Electrical Engineering
West Virginia University

Methodology application and validation on case studies, September 2002 Page 2

Report Summary

In this report we first present a methodology for uncertainty analysis of software reliability that can be
used throughout the software life cycle. Then, we describe in details several methods for uncertainty
analysis that can be used within this methodology: entropy, method of moments, and Monte Carlo
simulation. The methodology and all methods for uncertainty analysis are applied and validated on a
case study based on the software developed for the European Space Agency. Also, we apply our
methodology on the NASA’s Hub Control System (HCS) from the International Space Station (ISS)
based on the available software artifacts for this case study.

Methodology application and validation on case studies, September 2002 Page 3

Table of Contents

1. Introduction …………………………………………………………………… 4
2. Related work and uniqueness of the research work …………………………… 4
3. Methodology for uncertainty analysis ………………………………………… 5
 3.1. Software architecture ……………………………………………………... 6
 3.2. Components failure behavior ……………………………………………… 7
 3.3. Combining software architecture with failure behavior ………………….. 8
 3.4. Uncertainty analysis ………………………………………………………. 8
4. Description of the case studies ………………………………………………… 9
 4.1. Case study from the European Space Agency ……………………………. 9
 4.2. Case study from NASA: Hub Control Software …………………………. 12
5. Uncertainty analysis based on entropy ………………………………………. 18
 5.1. Application of the entropy on the ESA case study ………………………. 19
 5.1.1. Uncertainty of ESA operational profile ……………………………. 19
 5.1.2. Uncertainty of ESA software reliability ……………………………. 20
 5.1.3. Uncertainty of ESA components …………………………………… 21
 5.2. Application of the entropy on the NASA’s HCS case study ……………… 22
6. Uncertainty analysis based on method of moments …………………………… 26
 6.1. Application of the method of moments on the ESA case study …………... 28
7. Uncertainty analysis based on Monte Carlo simulation ……………………….. 29
 7.1. Application of the Monte Carlo method on the ESA case study ………….. 31
8. Conclusion ……………………………………………………………………… 37
 References ……………………………………………………………………… 37

Methodology application and validation on case studies, September 2002 Page 4

1. Introduction

A number of analytical models have been proposed to address the problem of quantifying software
reliability. One group of models is focused on modeling reliability growth during testing phase
[Farr96]. These so called black - box models treat the software as monolithic whole, considering only
its interactions with external environment, without an attempt to model the internal structure. Black -
box models are clearly inappropriate for large component - based systems. For these systems, we need
to use a white - box approach that takes into account the information about the architecture of software
made out of components. An extensive survey on architecture -- based software reliability models,
including their assumptions, usefulness, and limitations is presented in [Goseva01a].

Two important questions arise with respect to predications of software reliability based on models.
The first question addresses the appropriateness of the model. Thus, the model could be inappropriate
because its assumptions may not hold in practice. The second question addresses the accuracy of
parameters values. Parameters can be estimated using the field data obtained during testing or
operational usage of the software, historical data for products with similar functionality, or reasonable
guesses based on the specification and design documentation. In practice, there is a lot of uncertainty
around parameters because they rarely can be estimated accurately. The traditional way of estimating
software reliability by plugging point estimates of the unknown parameters into the model [Farr96],
[Goseva01a] is not appropriate since it discards any variance due to uncertainty of the parameters. In
order to answer the question how parameters uncertainties propagate into reliability estimation,
uncertainty analysis is necessary.

In this report we first present the methodology for uncertainty analysis of software reliability. Then,
we apply and validate our methodology on the case studies from European Space Agency and NASA.
The rest of the report is organized as follows. The discussion of the related work is presented in
Section 2. The basic concepts of the proposed methodology for uncertainty analysis are presented in
Section 3. The description of the case studies is given in Section 4. The entropy, method of moments,
and Monte Carlo simulation as methods for uncertainty analysis are described and applied on the case
studies in Sections 5, 6, and 7 respectively. Finally, the concluding remarks are presented in Section 8.

2. Related work and uniqueness of the research

Traditionally, the most common method for uncertainty analysis in software reliability is
conducting sensitivity studies. Thus, sensitivity of the software reliability estimation to errors in the
operational profile has been investigated in the context of black - box reliability growth models
[Chen94], [Musa94], [Pasquini96]. Sensitivity studies of software reliability estimates obtained using
architecture - based models have been presented in [Cheung80], [Siegrist88]. In these studies the
authors assumed fixed known values for the transition probabilities and derived the sensitivity of the
system reliability with respect to the reliability of each component. However, any inaccuracy in the
operational profile directly will affect transition probabilities among components. Therefore, in
[Goseva01b] we presented the sensitivity studies of software reliability with respect to the operational
profile (i.e., transition probabilities) and component reliabilities.

In addition to sensitivity studies, there have been several attempts to quantify the variability of
software reliability. In [Miller92] authors used black - box approach and assumed that the failure
probability has prior Beta distribution. Using Bayesian approach they derived the mean and the
variance of the failure probability for a software system that, in its current version, has not failed. The
same problem was considered in [Adams96] for the software with partitioned input domain. However,

Methodology application and validation on case studies, September 2002 Page 5

in this work it was recognized that there is uncertainty in the estimations of the reliability for each
partition (using Beta prior distribution), as well as uncertainty in the probability of using each partition
(using Dirichlet distribution). In [Singh01] the mean and the variance of software failure probability
were estimated using Bayesian approach and assuming Beta prior distributions for component failure
probabilities. In another related work [Leung97] three optimization models for software reliability
allocation under an uncertain operational profile were formulated and solved. In this case the
operational profile was characterized with the probabilities of function execution.

Several papers that use discrete time Markov chains to describe software usage are also relevant to
our work, although they do not consider software reliability. Thus, in [Whittaker93] Markov analysis
of software specifications was presented and entropy was used as a measure of uncertainty. In
[Wesslen00] the impact of uncertainties in the operational profile on the usage coverage was analyzed.
Uncertainties were specified as intervals of transition probabilities assuming a uniform distribution in
the interval.

From the above it is obvious that uncertainty analysis was not used systematically and extensively
in software reliability. However, it has a long tradition in other engineering applications. Thus, several
methods for uncertainty analysis of system characteristics from uncertainties in component
characteristics are presented in [Hahn94], [Jackson81], [Yin01].

In this report we propose a methodology for uncertainty analysis of architecture - based software
reliability models suitable for large complex component - based applications and applicable throughout
the software life cycle. The methodology addresses the parameter uncertainty problem and enables us
to study how the uncertainty of parameters propagates in the system reliability. Within this
methodology we are considering several different methods for uncertainty analysis. So far we have
used entropy [Kamavaram02], methods of moments [Goseva02b], and Monte Carlo simulation
[Goseva02c] for uncertainty analysis.

The general goal of our work is to point out the need for conducting uncertainty analysis in
software reliability and to illustrate its usefulness. Thus, the proposed methodology provides a
systematic way for uncertainty analysis that can be used for keeping track of the software evolution
throughout the life cycle. Uncertainty assessment also provides valuable information for allocation of
testing efforts. Also, it can be used for certification of software system given its structure and the
inaccuracy in estimation of its usage. This is an important aspect of our work, because with the
growing emphasis on reuse developers can not afford to stay away from reliability certification.

3. Methodology for uncertainty analysis

The architecture - based approach for software reliability assessment considers the utilization and
the reliability of components, thus allowing insight into the dynamic behavior of software executions.
In order to estimate the system reliability using architecture - based model we need to know the
software architecture (structure of component interactions), software usage described by the
operational profile (relative frequencies of component interactions determined by transition
probabilities), and software failure behavior (component reliabilities or failure rates). In [Goseva01b]
we have shown that the architecture – based software reliability model presented in [Cheung80]
provides system reliability estimates close to the actual measured reliability, that is, we have validated
the model appropriateness. In this report we propose a methodology for uncertainty analysis (see
Figure 1) and focus on the assessment of the uncertainty in software reliability due to uncertainty of
modeling parameters. The basic concepts of our work were presented in [Goseva02a]. Here, we
describe the proposed methodology in detail.

Methodology application and validation on case studies, September 2002 Page 6

Figure 1. Methodology for uncertainty analysis of software reliability

3.1. Software architecture

Software behavior with respect to the manner in which different components interact is defined
through the software architecture. We use state - based approach to build the architecture - based
software reliability model [Goseva01a], [Goseva01b]. This approach uses the control flow graph to
represent software architecture. The states represent active components and the arcs represent the
transfer of control. Based on the assumption that the transfer of control between components has a
Markov property, the architecture is modeled with a discrete time Markov chain (DTMC) with a
transition probability matrix][ijpP = , where

}Pr{ jcomponenttoicomponentfromcontrolthetransfersprogrampij = . The Markov chain has
a two-phase construction. The structural phase involves the establishment of the static software
architecture. The static software architecture can be build using different abstraction levels as defined
by the specification, or obtained using parser-based or lexically based tools. The dynamic statistical
phase involves the estimation of the relative frequencies of components interactions, that is, transition
probabilities which are clearly dependent on the operational profile. During the early phases of
software development, dynamic software behavior can be captured using UML use cases and sequence
diagrams. During the integration phase profiles or test coverage tools can be used to obtain data
necessary to describe dynamic behavior. Next, we briefly describe two different approaches that we
use to build a DTMC that represents dynamic software architecture.
 Intended approach is used in early phases of software development. We base our estimates on

historical data from similar products or on high level information about software architecture

Informed
Approach

component traces

Fault
injection

Non-failed
executions

Growth
models

 Uncertainty
analysis

Intended
Approach

historical data, UML

1-p23

1-p12

p12
R1

R2

R3

p23

Methodology application and validation on case studies, September 2002 Page 7

obtained from specification and design documents. Since, UML is rapidly becoming a standard for
software development, in intended approach we are looking into the UML annotations such as use
cases and sequence diagrams [UML]. Use case diagrams provide graphic description of how
external entities interact with the system. Sequence diagrams depict how group of components
interact in a use case. Each sequence diagram shows a number of components and the how many
times the messages are exchanged between them.

 Informed approach is used during late phases of software development when testing or field data
become available. Thus, component traces obtained using profilers [gprof] and test coverage tools
[ATAC] can be used to obtain a set of execution paths and establish the frequency count of the
transition arcs.
Dynamic information in software architecture clearly depends on the software usage, that is, the

operational profile. Operational profiles have been developed successfully for the applications such as
real-time telecommunication systems where the use of the software is predictable because it is related
to identifiable events due to human activity [Musa93]. In general, the estimation of a trustworthy
operational profile is difficult because it requires anticipating the field usage of the software and a
priori knowledge about the application and system environments. A typical example would be a flight
control system of a spacecraft in which very critical software components are activated by physical
events whose frequencies during the field usage are totally unknown. Further, in process control
applications various software components are activated by complex sequences of events whose
frequencies can hardly be estimated a priori. In other cases, a single operational profile is not sufficient
to describe the use of the product by different users. Because the effort required to derive an
operational profile for each group of users is usually extremely high, the usual solution is to adopt an
approximate operational profile that represents a rough average of the operational profiles of the
different users. In addition to above difficulties, problems could arise due to the changes of the
operational profile during the development and field usage of the software. Thus, software systems
evolve because functions are added or modified. As a consequence, the way in which the software is
used also evolves, and the operational profile changes. This, of course, will invalidate any existing
estimates of the operational profile. These reasons can easily lead to erroneous estimates of the
operational profile which will directly affect the reliability estimate. Therefore, it is important to
conduct uncertainty analysis due to uncertainty in the operational profile estimation.

3.2. Components failure behavior

The next step in our methodology is to consider components failure behavior, i.e., estimate the
reliability of each component. We assume that components fail independently. The reliability of the
component i is the probability iR that the component performs its function correctly. Assessing the
reliability of software components clearly depends on the factors such as whether or not component
code is available, how well the component has been tested, and whether it is a reused or a new
component.

Several techniques for estimating component's reliability have been proposed. Software reliability
growth models can be applied to each software component exploiting component's failure data
obtained during testing [Farr96]. However, due to the scarcity of failure data it is not always possible
to use software reliability growth models. Another possibility is to estimate component's reliability
from explicit consideration of non-failed executions, possibly together with failures [Miller92],
[Nelson73]. In this context, testing is not an activity for discovering faults, but an independent
validation activity. The problem that arises with these models is the large number of executions

Methodology application and validation on case studies, September 2002 Page 8

necessary to establish a reasonable statistical confidence in the reliability estimate. Finally, one can use
fault injection technique to estimate component's reliability [Goseva01b]. However, fault-based
techniques are only as powerful as the range of fault classes that they simulate. Regardless of the
technique, the estimates of component reliabilities may be inaccurate, which further motivates the use
of uncertainty analysis.

3.3. Combining software architecture with failure behavior

 The presented methodology for uncertainty analysis can be applied to any architecture - based
software reliability model that has a close form solution for the system reliability. In this report we use
the model first presented in [Cheung80] which uses composite method to combine software
architecture with failure behavior. Two absorbing states C and F are added to the DTMC, representing
the correct output and failure respectively. The transition probability matrix P is modified to P̂ as
follows. The original transition probability ijp between the components i and j is modified into iji pR ,
which represents the probability that the component i produces the correct result and the control is
transferred to component j. From the exit state n, a directed edge to state C is created with transition
probability nR to represent the correct execution. The failure of a component i is considered by
creating a directed edge to failure state F with transition probability)1(iR− . The reliability of the
program is the probability of reaching the absorbing state C of the DTMC. Let Q be the matrix
obtained from P̂ by deleting rows and columns corresponding to the absorbing states C and F.

),1(nQk represents the probability of reaching state n from 1 through k transitions. From initial state 1
to final state n, the number of transitions k may vary from 0 to infinity. It can be shown that

1
0)(−∞

= −==∑ QIQS k
k , so it follows that the overall system reliability is nRnSR),1(= .

3.4. Uncertainty analysis

Using the model described in Section 3.3 we obtain the expression for system reliability R as a
function of transition probabilities ijp and component reliabilities iR . These parameters are required to
have input values so that the software reliability can be computed from the model. Regardless of the
accuracy of the mathematical model used to model software reliability, if considerable uncertainty in
components failure data exists (as it usually does) then a significant uncertainty in calculated system
reliability exists. Therefore, the traditional approach of computing the point estimate of the system
reliability by plugging point estimates of component reliabilities into the model is not appropriate. In
order to answer the question how parameters uncertainties propagate into overall system reliability,
uncertainty analysis is necessary. To conduct uncertainty analysis, we can treat unknown parameters as
random variables and quantify the uncertainty of system reliability. In this case, the system reliability
is also a random variable.

Different methods can be applied for synthesizing uncertainty in system reliability from
uncertainties in component reliabilities and transition probabilities (see Figure 2). The choice of the
method will depend on criteria such as data requirements, reliability measures derived, accuracy of the
solutions, and scalability with respect to the number of components. In this report we use entropy,
method of moments, and Monte Carlo simulation for uncertainty analysis of software reliability.

Methodology application and validation on case studies, September 2002 Page 9

Figure 2. Methods for uncertainty analysis in software reliability

4. Description of the case studies
We apply and validate our methodology on case studies from European Space Agency and NASA.

In this section we briefly describe these case studies.

4.1. Case study from the European Space Agency (ESA)
The application from the European Space Agency [Goseva01b] provides language - oriented user

interface which allows the user to describe the configuration of an array of antennas. Its purpose is to
prepare a data file in accordance with a predefined format and characteristics from a user, given the
array antenna configuration described using the Array Definition Language. The program was
developed in C language and consists of almost 10,000 lines of code. It is divided into three
subsystems: the Parser subsystem, the Computational subsystem, and the Formatting subsystem. The
choice of this program as a case study was based on the following:

 The program is real and of typical size for this kind of application.
 The programming language is widely used.
 The program has been extensively used after the last fault removal without failures. This gold

version is used as an oracle in the experiment.
 A set of test cases is generated randomly accordingly to the known operational profile determined

by interviewing the users of the program.
 Component traces obtained during the testing are used for building the software architecture and

estimating transition probabilities.
 Component reliabilities are estimated using fault injection. Faults reinserted in the code during the

experiment are the real faults discovered during integration testing and operational use of the
program.
Figure 3 presents the special case of our methodology for uncertainty analysis used for the

European Space Agency case study.

 Uncertainty analysis

Sensitivity
studies

Entropy

Confidence
intervals

Probability distributions

Analytical

Monte Carlo
simulation Method of moments

Perturbation
analysis

Methodology application and validation on case studies, September 2002 Page 10

Figure 3. Special case of the methodology used for the ESA case study

DTMC that represents software architecture is shown in Figure 4. Components 1, 2, and 3
correspond to the Parser, Computational, and Formatting subsystems respectively. State E represents
the completion of execution. The choice for the decomposition was made in order to reach a tradeoff
between number of components, their size, and the ability to collect data needed for use in the model.

Figure 4. Software architecture for the ESA case study
In the experiment, two faulty versions of the program were constructed. Faulty version A consists

of fault-free component 3 and faulty components 1 and 2, while faulty version B consists of fault-free
components 1 and 3 and faulty component 2. Each faulty version of the program and the oracle were

 1-p23

1-p12

1

2

E

3

p23

p12

1

Informed
Approach

component traces

Fault
injection

 Uncertainty
analysis

1-p23

1-p12

p12
R1
R2

R3
p23

Methodology application and validation on case studies, September 2002 Page 11

executed on the same test cases generated randomly on the basis of the operational profile. Component

traces obtained during testing were used for estimating transition probabilities
i

ij
ij n

n
p = , where ijn is the

number of times control was transferred from component i to component j, and ∑=
j

iji nn .

When the outputs of the faulty version and the oracle disagreed it was necessary to determine the
component that has failed. Identification of the fault responsible for the failure was only aimed at
determining which component has failed. Faults have not been removed and the number of failures

includes recurrences due to the same fault. Component reliabilities are estimated as
i
i

n
i n

fR
i ∞→

−= lim1 ,

where if is the number of failures and in is the number of executions of component i in N randomly
generated test cases accordingly to the operational profile. Estimated values for transition probabilities

ijp and component reliabilities iR for both faulty versions are given in Table 1.

Version 12p 23p 1R 2R 3R
A 0.5933 0.7704 0.8428 0.8346 1
B 0.7364 0.6866 1 0.8346 1

Table 1. Transition probabilities and component reliabilities for versions A and B

DTMC presented in Figure 5 is a composite state based model of this application. The expression for
system reliability obtained using the model is given by

3212312212312112)1()1(RRRppRRppRpR +−+−= .

Figure 5. Architecture-based software reliability model for the ESA case study

 (1-p23)R2

(1-p12)R1

1

2

E

3

p23R2

p12R1

R3

C

F

1

1-R1

1-R2

1-R3

Methodology application and validation on case studies, September 2002 Page 12

 As it can be seen from Table 2, the architecture - based software reliability model gives accurate
estimations compared to the actual reliability for each of the faulty versions which validates the
appropriateness of this model for software reliability estimation.

Table 2. Comparison of the results

We also consider a hypothetical example of software architecture given in Figure 6 which has an
additional transition from component 2 to component 1. This example is meant to illustrate how the
components executed within a loop affect software reliability.

Figure 6. Software architecture for the hypothetical example

For the example in Figure 6 the system reliability obtained using the model described in Section 3.3 is
given by

212112

321231221232112112
1

)1()1(
RRpp

RRRppRRpppRpR
−

+−−+−
= .

4.2. Case study from NASA: Hub Control Software

Our case study from NASA is the Hub Control Software (HCS). This is Computer Software
Configuration Item (CSCI) resident in the Hub Control Zone Multiplexers/Demultiplexers (HCZ
MDMs) which are installed in the Node 3 Module of the ISS (International Space Station). For this
case study we only had available the UML use case diagram and sequence diagrams for each use case.
Therefore, we are using the intended approach to build software architecture. We build DTMCs using
UML sequence diagrams that present software components used for given scenario and the how many

Faulty version Actual reliability Estimated reliability Error

A 0.7393 0.7601 2.81%

B 0.8782 0.8782 0%

1-p12

1

2

E

3

p23

p21

1

p12

1-p21-p23

Methodology application and validation on case studies, September 2002 Page 13

times the messages are exchanged between these components. The expression used to estimate the

transition probability from component i to component j is given by
i

ij
ij n

n
p = , where ijn is the number

of times messages are transmitted from component i to component j and in is the total number of
massages from component i to all other components that are present in the sequence diagram.

Data for the components failure behavior were not available for the HCS case study. Also, we
didn’t have historical failure data for similar projects. Therefore, for the HCS case study we only apply
the uncertainty analysis of the operational profile based on entropy. Figure 7 presents the special case
of our methodology used for the HCS case study.

Figure 7. Special case of the methodology used for HCS case study

Figure 8 shows the main use case diagram and all the relationships among the use cases and the

actors. Each use case is realized by at least one sequence diagram (or scenario).

 Uncertainty
analysis

Intended
Approach

historical data, UML

1-p23

1-p12

p12

p23

Methodology application and validation on case studies, September 2002 Page 14

Mode_settin
g

Single_MT

<<uses>
>
<<uses>
>

Single_LT

<<uses>
>
<<uses>
>

Dual_LT_Failed

<<uses>
>
<<uses>
>

Dual

<<uses>
>
<<uses>
>

Dual_MT_Failed

<<uses>
>
<<uses>
>

MT_Pump_Retry

LT_Pump_Retry

Retry_Both_Pumps

SFCA_MT

SFCA_LTPPA_MTPPA_LT

W arnig_for_Total_failu
re

Failure_Recover
y

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

Operator

Monitoring

Figure 8. Use case diagram of the HCS case study

Out of the available sequence diagrams for the use cases in the HCS study we use the Both Pumps
Retry, Dual, and LT Pump Retry. Figure 9 shows the sequence diagram of the Both Pumps Retry
scenario.

Methodology application and validation on case studies, September 2002 Page 15

RPCM_LT / rPCMR2
 : RPCM

RPCM_MT / rPCMR1
 : RPCM

 / pFMC_MTR1
 : PFMC_MT

 / pFMC_LTR1
 : PFMC_LT

 / fRITCSR1
 : FRITCS

 / sCITCSR1
 : SCITCS

Switch_CloseFailed Switch_CloseFailedDual_Mode_OOOODual

1: LT_Failed1: LT_Failed

1: MT_Failed1: MT_Failed

2: Pump_Retry(Retry)2: Pump_Retry(Retry)

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O

3: Open_Switch (void)3: Open_Switch (void)

4: Open_Switch (void)4: Open_Switch (void)

Dual Switch_Open

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O Switch_Open

5: Close_Switch (void)5: Close_Switch (void)

Switch_ClosePPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O

6: Pump_Retry (void)6: Pump_Retry (void)

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O Pump_Retry

7: Retry_Success (void)7: Retry_Success (void)

8: Pump_Retry_Success (void)8: Pump_Retry_Success (void)

Dual_Mode_OFOO
8: MT_Operating (void)8: MT_Operating (void)

Dual

Dual_Mode_OFOO Operating

Pump_Retry (Pump_Retry_Data{Retry_Type 1,Fail ure_Type 6})Pump_Retry (Pump_Retry_Data{Retry_Type 1,Fail ure_Type 6})

10: Pump_Retry (void)10: Pump_Retry (void)

Dual_Mode_OFOO Pump_Retry

11: Retry_Success (void)11: Retry_Success (void)

12: Pump_Retry_Success (voi d)12: Pump_Retry_Success (voi d)

Dual Dual_Mode_OOOO

12: LT_Operating (void)12: LT_Operating (void)

OperatingDual_Mode_OOOO

Figure 9. Sequence diagram of the Both Pumps Retry scenario

Methodology application and validation on case studies, September 2002 Page 16

Analyzing the sequence diagram of the Both Pumps Retry scenario given in Figure 9, we
construct the DTMC that represents the software execution behavior as shown in Figure 10.

Figure 10. DTMC for the Both Pumps Retry scenario
Transition probability matrix for the Both Pumps Retry scenario is given by

 S 1 2 3 4 5 6 E

where S, 1, 2, 3, 4, 5, 6, and E denote the start sate, components PFMC_LT, PFMC_MT, FRITCS,
RPCM_LT, RPCM_MT, SCITCS, and the end (terminating) state respectively.

=

10000000
10000000
00001000
00001000
09/49/29/109/19/10
00001000
00001000
000002/12/10

6
5
4
3
2
1

E

S

P

FRITCS

SCITCS

RPCM_MT

RPCM_LT

PFMC_LT

PFMC_MT
S

E

Methodology application and validation on case studies, September 2002 Page 17

 DTMC that represents the software execution behavior of the Dual scenario is shown in Figure
11.

Figure 11. DTMC of the Dual scenario
Transition probability matrix for the Dual scenario is given by

 S 1 2 3 4 5 6 7 8 E

=

1000000000
0000000010
0000000010
0000000010
0000000010
0000000010
0000000010
1000000000
012/212/212/1012/312/312/100
0000100000

8
7
6
5
4
3
2
1

E

S

P

where S, 1, 2, 3, 4, 5, 6, 7, 8, and E represent the start state, components SCITCS, FRITCS,
PFMC_LT, PFMC_MT, Schedular, Application Command Queue, Data Access 1, Data Access 2, and
the end state respectively.

S E

Scheduler

SCITCS

Application
Command Queue

FRITCS

Data Access 1

PFMC_MT

PFMC_LT

Data Access 2

Methodology application and validation on case studies, September 2002 Page 18

DTMC that represents the software execution behavior of the LT Pump Retry scenario is shown in
Figure 12.

Figure 12. DTMC of the LT Pump Retry scenario

Transition probability matrix for the LT Pump Retry scenario is given by

 S 1 2 3 4 5 E

=

1000000
0001000
1000000
06/26/3006/10
0001000
0001000
00002/12/10

5
4
3
2
1

E

S

P

where S, 1, 2, 3, 4, 5, and E represent the start state, components PFMC_LT, Data Access 1, FRITCS,
SCITCS, RPCM_LT, and the end state.

5. Uncertainty analysis based on entropy

In this section, we present the uncertainty analysis using entropy, a well-known concept from
information theory [Ash65]. Source entropy that measures the amount of uncertainty inherent in a
Markov source is given by [Ash65]

∑∑−=
j

ijij
i

i ppH logπ

SCITCS

FRITCS

Data Access 1

RPCM_LT

PFMC_LT

S

E

Methodology application and validation on case studies, September 2002 Page 19

where iπ is the steady state probability of state i and ijp are the transition probabilities. This single
value is related to the number of paths that are statistically typical of the Markov chain. Thus, higher
value implies exponentially greater number of typical paths, i.e., more paths exist because of the
uncertainty present in the source. The entropy value is maximum when all the transitions that are exit
arcs from each state are equiprobable. The range of entropy for a Markov chain with n states is

)log(0 nH ≤≤ .
 In this report, we use the concept of source entropy to quantify the uncertainty of the

operational profile and architecture-based software reliability models. In addition, we quantify the
uncertainty of components using the conditional entropy [Ash65]. Thus, the uncertainty of component
i (i.e., state i) is given by equation ∑−=

j
ijiji ppH log . In general, uncertainty of component i will be

higher if it transfers the control to more components (i.e. more states are directly reachable from state
i) and the transition probabilities are equiprobable. Further, we compute the steady state probabilities

][iππ = by solving the system of equations Pππ = , where P is the transition probability matrix of the
DTMC. Since iπ can be interpreted as the expected execution rate of component i in the long run, it
represents a measure of component usage which in addition to component uncertainty iH can be used
to identify critical components.

5.1. Application of the entropy on the ESA case study

5.1.1. Uncertainty of ESA operational profile
Using the equation for the source of entropy H we plot in Figure 13 the variation in the uncertainty

of the operational profile as a function of 12p and 23p . In general, when transition probabilities are
close to 0 or 1 the number of typical paths will be small and the uncertainty will be low. The maximum
uncertainty 0.5514 is obtained when both 12p and 23p are equal to 0.5. The uncertainty of the two
operational profiles defined by the empirical values of transition probabilities for versions A and B
given in Table 1 are 0.4707 and 0.4604, respectively. Thus, operational profile A is more uncertain
than operational profile B, although the difference is not significant.

Figure 13. Uncertainty of the operational profile as a function of 12p and 23p

Methodology application and validation on case studies, September 2002 Page 20

5.1.2. Uncertainty of ESA software reliability

Next, we consider the uncertainty of software reliability. As in the case of the operational profile,
in order to estimate the source entropy of a DTMC given in Figure 5, we consider multiple software
executions by adding transitions from both states E and F to the starting state 1. The addition of failure
state F to DTMC and the modification of transition probability matrix affect the source entropy. In
Figure 14 we illustrate how the uncertainty H and system reliability R vary as functions of 12p and

23p for versions A and B. As indicated by these figures, considering components failure behavior
increases the uncertainty of both versions compared to the uncertainty due to operational profile (see
Figure 13). Note that version B, which is more reliable, is less uncertain than version A.

Figure 14. Uncertainty and reliability for versions A and B as functions of 12p and 23p

Version A reliability

 Version A uncertainty Version B uncertainty

Version A reliability Version B reliability

Methodology application and validation on case studies, September 2002 Page 21

5.1.3. Uncertainty of ESA components

Expected execution rates iπ and uncertainties iH for components in the operational profiles A and B
are shown in Table 3 and Figure 15. Component 1 in operational profile A has the highest uncertainty
since transition probability 12p is close to 0.5. The uncertainty of component 3 is zero because there is
only one transition out of state 3, i.e., we are certain that the control will be transferred to component 4.
Of course, components that have higher expected execution rate and higher uncertainty will require
more testing effort.

iπ iH
Version A Version B Version A Version B

State 1 0.3278 0.3085 0.9747 0.8321
State 2 0.1945 0.2271 0.7773 0.8971
State 3 0.1498 0.1560 0 0
State E 0.3278 0.3085 0 0

Table 3. Execution rates and uncertainties of components for operational profiles A and B

Figure 15. Execution rates and uncertainties of components for operational profiles A and B

Expected execution rates iπ and uncertainties iH for the components in the software reliability
model given in Figure 5 are shown in Table 4 and Figure 16.

Compon
en

t 1

Compon
en

t 2

Compon
en

t 3

State
E

Execution rate

Uncertinty

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Compon
en

t 1

Compon
en

t 2

Compon
en

t 3

State
E

Execution rate

Uncertainty

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Methodology application and validation on case studies, September 2002 Page 22

iπ iH
Version A Version B Version A Version B

State 1 0.3544 0.3166 1.4491 0.8321
State 2 0.1772 0.2332 1.2958 1.3958
State 3 0.1139 0.1336 0 0
State E 0.2694 0.2781 0 0
State F 0.0851 0.0386 0 0

Table 4. Expected execution rates and uncertainties of components for the software reliability model,

versions A and B

Figure 16. Expected execution rates and uncertainties of the components for the software reliability
model, versions A and B

Comparing the results in Table 3 and Table 4 (i,e, Figure 15 and Figure 16), we see that the

uncertainty of component 1 in version B remains the same because 11 =R results in zero transition
probability to failure state. For all other components (1 and 2 in version A and 2 in version B) the
component uncertainty increases due to 1<iR which leads to additional transitions to failure state. In
summary, components that have higher expected execution rate, higher component uncertainty and
moderate reliability should be allocated more testing effort.

5.2. Application of the entropy on the NASA’s HCS case study
In this section we apply entropy as a measure for uncertainty on the HCS case study. DTMC that

describes the software architecture of Both Pumps Retry scenario given in Figure 10 consists of eight
components, including the starting and end state of the application. The uncertainty of the operational
profile defined by the transition probability matrix of this scenario is 0.7505. Note that this value of
uncertainty is low compared to the maximum uncertainty (38log2 =) due to the fact that the control
flow graph (DTMC) of this scenario is not highly connected, that is, the transition probability matrix is

Compon
en

t 1

Compon
en

t 2

Compon
en

t 3

State
E

State
F

Execution rate

Uncertainty

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Compon
en

t 1

Compon
en

t 2

Compon
en

t 3

State
E

State
F

Execution rate
Uncertainty

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

c

Methodology application and validation on case studies, September 2002 Page 23

sparse with many transition probabilities equal to 0. Using the equation for the source of entropy we
have plotted the variation of the uncertainty of the operational profile as a function of 12p and 47p on
Figure 17.

Figure 17. Uncertainty for the operational profile for the Both Pumps Retry scenario

Next we focus on the component uncertainty and expected execution rate for the Both Pumps Retry
scenario (see use Table 5 and Figure 18).

States S PFMC_LT PFMC_MT FRITCS RPCM_LT RPCM_MT SCITCS T

πi 0.1334 0.1 0.1 0.2999 0.0333 0.0666 0.1334 0.1334
Hi 1 0 0 2.0579 0 0 0 0

Table 5. Execution rates and uncertainties of components in the Both Pump Retry scenario

S
PF

M
C

_L
T

PF
M

C
_M

T
FR

IT
C

S
R

PC
M

_L
T

R
PC

M
_M

T

SC
IT

C
S T

Execution Rate
Uncertainty0

0.5

1

1.5

2

2.5

Figure 18. Execution rates and uncertainties of components in the Both Pump Retry scenario

Methodology application and validation on case studies, September 2002 Page 24

It is obvious from Table 5 and Figure 18 that the component FRITCS is executed most often and its
uncertainty is the highest. Clearly, FRITCS is the most critical components in Both Pumps Retry
scenario and would require significantly more testing effort than other components.

Next, we consider the Dual scenario with a DTMC given in Figure 11. The uncertainty of this
scenario estimated using the equation for the source of entropy is 1.093. The entropy is higher than in
the case of Both Pumps Retry scenario because more components are involved in Dual scenario. The
variation of the uncertainty of Dual scenario as a function of 34p and 39p is presented in Figure 19.

Figure 19. Uncertainty for the operational profile of the Dual scenario

The expected execution rates and uncertainties of components in the Dual scenario are presented in
Table 6 and Figure 20. In the case of Dual scenario component SCITCS is executed most often and has
the highest uncertainty. On the other side, FRITCS which is the most critical component in the Both
Pumps Retry scenario is not critical for the Dual scenario. First, it is executed with the expected rate
0.037 significantly lower that 0.2999 in the Both Pumps Retry scenario. Also, the uncertainty of
FRITCS in Dual scenario is 0 (it transfers the control only to the end state).

States S Scheduler SCITCS PFMC_LT PFMC_MT Data
Access 1

Data
Access 2

App.
Comm.
Queue

FRITCS T

πi 0.037 0.037 0.4445 0.111 0.1111 0.0741 0.0741 0.037 0.037 0.037
Hi 0 0 2.4591 0 0 0 0 0 0 0

Table 6. Execution rates and uncertainties of components in the Dual scenario

Methodology application and validation on case studies, September 2002 Page 25

S
Sc

he
du

la
r

SC
IT

C
S

PF
M

C
_L

T
PF

M
C

_M
T

D
at

a
Ac

ce
ss

 1

D
at

a
Ac

ce
ss

 2
Ap

p.
 C

om
m

. Q

FR
IT

C
S T

Execution RateUncertainty0

0.5

1

1.5

2

2.5

Figure 20. Execution rates and uncertainties of components in the Dual scenario

Let us now consider the LT Pump Retry scenario of the HCS case study. The DTMC for the LT

Pump Retry scenario given in Figure 12 has 7 states (including the starting state S and end state E).
Consequently, it has less uncertain (0.5599) than Both Pumps Retry scenario. The variation of the
uncertainty of Dual scenario as a function of 12p and 45p is presented in Figure 21.

Figure 21. Uncertainty for the operational profile of the LT Pump Retry scenario

The expected execution rates and uncertainties of components in the Dual scenario are presented in
Table 7 and Figure 22.

Methodology application and validation on case studies, September 2002 Page 26

States S PFMC_LT Data
Access 1 FRITCS SCITCS RPCM_LT T

πi 0.1429 0.1191 0.0714 0.2857 0.1429 0.0951 0.1429
Hi 1 0 0 1.4595 0 0 0

Table 7. Execution rates and uncertainties of components in the LT Pump Retry scenario

S

PF
M

C
_L

T
D

at
a

Ac
ce

ss
1

FR
IT

C
S

SC
IT

C
S

R
PC

M
_L

T T
Execution RateUncertainty

0

0.5

1

1.5

2

2.5

Figure 22. Execution rates and uncertainties of components in the LT Pump Retry scenario

It is obvious from Table 7 and Figure 22 that the FRTCS component is the most critical component for
LT Pump Retry scenario as well as for the Both Pumps Retry scenario. The expected execution rates
are close (0.2857 and 0.2999 for the LT Pump Retry and Both Pumps Retry respectively). However, the
component uncertainty for the LT Pump Retry scenario (1.4595) is lower than for the Both Pumps
Retry scenario (2.0579). This is due to the fact that FRTCS component passes the control to the smaller
number of components in the LT Pump Retry than in the Both Pumps Retry scenario.

6. Uncertainty analysis based on method of moments

In this section we use the method of moments for conducting uncertainty analysis. The method of
moments is an approximate method that allows us to generate the moments of system reliability from
the moments of component reliabilities. We again use the model first presented in [Cheung80] to
obtain the relationship between system reliability R and the component reliabilities nRRR ,,, 21 K given
by the function),,,(21 nRRRfR K= . The actual relationship between system reliability and
components reliabilities depends on the specific software architecture. If we treat each component
reliability on the right - hand side of this expression as a random variable, then the system reliability is

Methodology application and validation on case studies, September 2002 Page 27

also a random variable. Note that the uncertainty analysis in general and the use of the method of
moments in particular are not limited to this model. They can be applied to any architecture - based
model that provides close form solution.

Let][iRE be the mean value of the ith component reliability and let][ik Rµ denote its kth central
moment (or moment about the mean). The method of moments allows us to obtain the estimates of the
expected value][RE and kth central moments][Rkµ for system reliability based on (1) knowledge of
the system structure),,,(21 nRRRfR K= and (2) data on the components reliabilities from which
estimates of][iRE and][ik Rµ for ni ,,2,1 K= can be obtained.

System reliability moments are generated by expanding the system function
),,,(21 nRRRfR K= in a multivariable Taylor series expansion about the statistically expected values

of each of the component reliabilities][iRE . We have used Mathematica to derive the system
reliability expression),,,(21 nRRRfR K= and its partial derivates for the Taylor series expansion.

The method of moments is an approximate, rather than an exact, method, because of the omission
of higher order terms in the Taylor series expansion. Thus, the first order Taylor series expansion is
given by

∑
=

−+≈
n

i
iii RERaaR

1
0])[(

where
])[,],[],[(210 nREREREfa K=

niforRERi
i

ii
R
Ra

,,2,1][K==∂
∂

=

Then, the mean and the variance of system reliability are given by 0][aRE ≈ and

∑ =≈= n
i ii RVaraRRVar 1

2
2][][][µ .

The accuracy of the][RE and][RVar can be improved by including higher order terms in the

Taylor series expansion. We have also derived the second order Taylor series expansion and the
expressions for the mean and the variance of system reliability.

∑ ∑ ∑∑
= = =

−

=
−−+−+−+≈

n

i

n

i

n

i

i

j
jjiiijiiiiiii RERRERaRERaRERaaR

1 1 1

1

1

2
0])[])([(])[(

2
1])[(

where
])[,],[],[(210 nREREREfa K=

niforRERi
i

ii
R
Ra

,,2,1][K==∂
∂

=

niforRRRi
ii

ii
R

Ra
,,2,1][

2

2

K==∂
∂

=

Methodology application and validation on case studies, September 2002 Page 28

niforRERji
ij

ii
RR
Ra

,,2,1][

2

K==
∂∂

∂
=

Then, the mean and the variance of system reliability for the second order Taylor approximation are
given by

∑
=

+≈
n

i
ii RVaraaRE

1
0][

2
1][

∑ ∑∑ ∑ ∑
= =

−

= = =
−+−++≈

n

i

n

i

i

j

n

i

n

i
iiiiiiiiijiijii REREaaREREaRVarRVaraRVaraRVar

1 1

1

1 1 1

34222]])[[(]])[[(
4
1][][][][

2

1

2])[(
4
1

i

n

i
ii RVara∑

=
−

Note that generating the mean and the variance of system reliability from the second order Taylor

series expansion requires the knowledge of the first four central moments of component reliabilities.
Even more, we can generate the first four central moments of the system reliability using the first eight
central moments of component reliabilities. Then, the estimates of the first four moments may be used
to select an empirical distribution from which the percentiles of the system reliability distribution may
be obtained.

6.1. Application of the method of moments on the ESA case study
Next, we illustrate the method of moments on the European Space Agency case study. Table 8

compares the values obtained for the mean, variance and coefficient of variation][/][RERVarCR =
(a relative measure of the spread of the distribution) of the system reliability for versions A and B
using first and second order Taylor series expansion. As expected, version B has higher mean
reliability then version A. In addition, the variance is smaller and the distribution of the system
reliability is less spread. Further, for this example the second order approximation does not improve
the accuracy.

 First order
Taylor series

Second order
Taylor series

Mean 0.7601 0.7601
Variance 0.0068 0.0068 Version A

RC 0.1085 0.1085
Mean 0.8782 0.8782
Variance 0.0035 0.0035 Version B

RC 0.0671 0.0671

Table 8. Mean and variance of the system reliability for versions A and B

Methodology application and validation on case studies, September 2002 Page 29

In general, higher order Taylor series expansion will increase accuracy, as it can be seen form
Table 9 which presents the results obtained for the hypothetical example given in Figure 6 (referred
here as version C).

 First order
Taylor series

Second order
Taylor series

Mean 0.6261 0.6314
Variance 0.0106 0.0101 Version C

RC 0.1640 0.1589

Table 9. Mean and variance of the system reliability for the hypothetical example

Although the accuracy may be further increased, the derivation of the third or higher order

approximations would constitute a formidable task and require higher number of central moments for
component reliabilities. Even if the expressions for the third (or higher) order approximation are
derived, it might happen that the sampling error due to limited number of observations available for
estimation of the central moments of the component reliabilities will exceed the error introduced by the
omission of higher order terms.

The method of moments has several advantages. First, it requires only the knowledge of the
moments of components reliabilities, that is, no distribution function must be specified. Second,
generation of random numbers is not required, therefore there is no sampling error. Finally, it could be
applied to dependent as well as independent parameters, although the expressions for dependent
variables would be more difficult to derive due to their complexity.

However, the method is approximate and a finite error is associated with the use of only up to first
(second) order terms in the Taylor series expansion. Further, the accuracy of this method is not readily
quantifiable. Therefore, if precise accuracy calculations for system reliability are required to support
the uncertainty analysis, the method of moments might not be a good choice.

7. Uncertainty analysis based on Monte Carlo simulation

Monte Carlo simulation is an approximate, but powerful method for estimating reliability of the
system when the parameters of the model can be represented by well defined probability distributions.
Direct sampling Monte Carlo method consists of the repeated generation of random variables from
parameter distributions and their combination according to derived equation for system reliability.
Essentially, this is equivalent to constructing many experiments or running many tests on identical
systems. A direct Monte Carlo simulation consists of the following steps:

1. Derive the expression for system reliability.

2. Assign probability distributions to transition probabilities and components reliabilities.
3. Estimate the parameters of these probability distributions from engineering judgment, historical or

test data.
4. Sample the probability distributions of the parameters.
5. Compute the system reliability using the expression determined in Step 1 and the values of the

parameters sampled in Step 4.
6. Repeat steps 4&5 until the desired number of system reliability values has been generated.
7. Calculate the moments, frequency chart, and percentiles for the system reliability; do the

distribution fitting.

Methodology application and validation on case studies, September 2002 Page 30

In this report we derive the reliability expression (step 1) using the architecture - based software

reliability model described in Section 3.3. Note that the uncertainty analysis in general and the use of
the Monte Carlo method in particular are not limited to this model. They can be applied to any
architecture - based model that provides close form solution.

In step 2 we assign probability distribution functions to transition probabilities and component
reliabilities. These distribution functions can be based on theoretical assumption or on observed data.

We assume that component reliabilities are random variables with Beta distribution with pdf given
by

11)1(
)()(
)(

)(−− −
ΓΓ
+Γ

= ii b
i

a
i

ii

ii
i RR

ba
ba

Rf

where .10 ≤≤ iR

We further assume that the rows in the transition probability matrix are independent and distributed
accordingly to Dirichlet distribution. This distribution is commonly used for a set of proportions
adding up to one and has been used in connection with Markov transition probability matrices
[Martin67]. Thus, the joint density for the ith row in transition probability matrix has the form

∏
=

−

ΓΓΓ
+++Γ

=
n

j
ij

inii

inii
inii

ijppppf
1

1

21

21
21)()()(

)(),,,(α

ααα
ααα

L

K
K

where 0≥ijp and .1
1

=∑
=

n

j
ijp

For the simulation of Dirichlet distribution we use the transformation approach [Johnson87] based

on the following property [Johnson69]. The standard Dirichlet distribution is defined as the
distribution of),,(2,1 nYYY K where ∑ == n

j jkk ZZY 1/ and njZ j ,,2,1, K= are independent, standard

Gamma distributed random variables with shape parameter jα . The Dirichlet distribution has two
properties that make it attractive. First, with the selection of different parameters it can take a wide
variety of shapes. Second, if the prior distribution is a Dirichlet, then the posterior distribution is also
Dirichlet. Even in cases where the use of the Dirichlet distribution is not implied by theory, due to its
variety of shapes it may prove useful as an approximation. However, our method is not restricted to
Dirichlet distribution. For instance, in some cases it might be assumed that parameters vary by some
fixed amount (e.g., 05.01.0 ±) and they are uniformly distributed in the interval.

The basic characteristics of uncertainty analysis based on Monte Carlo simulation with respect to
different criteria are the following:

 High data requirements in form of probability distribution functions of modeling parameters.

 Many characteristic of system reliability can be derived, including moments, percentiles, and
distribution functions.

 The accuracy of the method may be increased simply by increasing the number of simulations.
Although with the hardware available today it is not critical, it is worth mentioning that the
computational cost increases with the sample size.

Methodology application and validation on case studies, September 2002 Page 31

 Sampling errors may be involved in case of long tail distribution.

 Monte Carlo method scales very well, that is, it is not very sensitive to the number of components
in the system.

7.1. Application of the Monte Carlo method on the ESA case study

Numerical results presented in this section were obtained using two commercial tools. First, we use

Mathematica to derive the system reliability expressions),(iji pRfR = in symbolic form. Then, we
use Crystal Ball 2000 to run the simulations. In all cases, Monte Carlo simulation was carried for
10,000 trails.

In Figure 23 we consider how the uncertainty of the operational profile A (i.e., transition probabilities)
affects system reliability. For this purpose we keep the values of component reliabilities fixed to the
point estimates given in Table 1.

Figure 23. Uncertainty analysis of operational profile A

Frequency Chart

.000

.004

.008

.012

.015

0

38.5

77

115.5

154

0.7060 0.7332 0.7603 0.7874 0.8146

10,000 Trials 9,958 Displayed

Forecast: Reliability

Distribution Fitting

.000

.005

.011

.016

.021

0.7053 0.7326 0.7600 0.7873 0.8146

Weibull Distribution
Loc. = 0.7021
Scale = 0.0648
Shape = 3.00

Reliability

Overlay Chart

Certainty Bands - (Percentiles)

0.7000

0.7375

0.7750

0.8125

0.8500

95%

75%

50%

25%

10%

Trend Chart

Target Forecast: Reliability

P1E 60.6%

P12 39.4%

P3E 0.0%

P23 0.0%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

Sensitivity Chart

Methodology application and validation on case studies, September 2002 Page 32

The mean of the system reliability obtained from the simulations 0.7600 is very close to the point

estimate 0.7601 given in Table 2. The estimation of the mean reliability converges in approximately
3000 iterations (see Figure 24).

Figure 24. Convergence of the mean for the operational profile A

In addition to the mean reliability, we have estimated several other characteristics of the system
reliability distribution [Hahn94]:

 Coefficient of variability which related to the spread of a distribution (0.0276).

 Skewness which relates to the lean of a distribution (0.2072).

 Kurtosis which related to the peakedness of a distribution (2.6047).
Note that these measures are relative which allows us to compare different distributions.

The frequency chart presented in Figure 23 gives the probability (frequency) of occurrence for
different values of system reliability. In the case of operational profile A the range of the system
reliability is 0.7048 to 0.8270. The estimated value of the variance 0.0004 is small compared to the
variance of the transition probabilities. Also, the distribution is slightly skewed to the right
(i.e. has a right tail). We have also done a distribution fitting for system reliability using the frequency
data. In this case Weibull distribution with parameters given in the Figure 23 is the closest fit to the
frequency data based on the Chi - square fitness test.

Further, we have estimated the percentiles, i.e., certainty bands. In case of operational profile A
95% band ranges from 0.7205 to 0.7975, which implies that 95% of the values obtained for the
reliability fall in this range. Another interesting observation is with respect to the sensitivity of system
reliability to different parameters. The parameters in the Figure 23 are ordered accordingly to their
contribution to the variance of system reliability. Thus, the system reliability is the most sensitive to

121 1 pp E −= and the variance is positive.
Next, we illustrate how the variation of transition probabilities and component reliabilities together

affect the system reliability. The frequency chart, certainty bands, and sensitivity chart for version A
are given in Figure 25. The range of the reliability [0.3759,0.9818] is significantly larger than the one

0.755

0.7575

0.76

0.7625

0.765

1 1018 2035 3052 4069 5086 6103 7120 8137 9154

Number of Iterations

M
ea

n
R

el
ia

bi
lit

y

Methodology application and validation on case studies, September 2002 Page 33

in Figure 23. The distribution is skewed to the left, that is, has the left tail. In this example, even
though the variation of component reliabilities is small, they play critical role in the variation of system
reliability. As it can be seen from the sensitivity chart 93.3% of the reliability variation is due to
reliabilities 1R and 2R .

Figure 25. Uncertainty analysis of version A

In Figure 26 we present the results for version B obtained by varying transitions probabilities and
component reliabilities. The reliability range in this case is [0.4571, 0.9952] and the reliability
distribution is also skewed to the left. As it can be seen from the values given in Table 10 the reliability
distribution of version B has higher mean and less variance. Further, it is more skewed to the left (that
is, concentrated to the right), with higher peak. Also, certainty bands for version B are narrower than
for version A. The system reliability is still more sensitive to the variation of the component
reliabilities, although with smaller contribution to the variance (86.2%).

As the software development progresses, we expect that the software reliability will increase (for
example because of fixing faults). Also, more accurate data will become available which will decrease
the uncertainty of the parameters estimations. As a result, later in the life cycle we should obtain

Frequency Chart

.000

.007

.013

.020

.026

0

65.25

130.5

195.7

261

0.5000 0.6250 0.7500 0.8750 1.0000

10,000 Trials 9,953 Displayed

Forecast: Reliability

Distribution Fitting

.000

.007

.013

.020

.026

0.5000 0.6250 0.7500 0.8750 1.0000

Beta Distribution
Alpha = 17.5014
Beta = 5.3662
Scale = 0.9916

Reliability

Overlay Chart

Certainty Bands - (Percentiles)

0.5000

0.6250

0.7500

0.8750

1.0000

95%

75%

50%

25%

10%

Trend Chart

Target Forecast: Reliability

R1 72.3%

R2 21.0%

P1E 4.3%

P12 2.4%

P2E 0.0%

P23 0.0%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

Sensitivity Chart

Methodology application and validation on case studies, September 2002 Page 34

software reliability distributions with higher mean (close to 1), less variance, concentrated to the right
(i.e., skewed to the left), and with higher peaks.

Figure 26. Uncertainty analysis of version B

Version Mean
Coefficient of

variability
Skewness Kurtosis

A 0.7594 0.1126 -0.4781 3.1644

B 0.8798 0.0722 -0.9313 4.0617

Table 10. Characteristics of reliability distribution for versions A and B

Our next numerical example illustrates the uncertainty analysis for the hypothetical example
presented in Figure 6. Table 11 compares the characteristics of the system reliability distribution
(mean, coefficient of variation, skewness, and kurtosis) for five different values of transition

Frequency Chart

.000

.009

.018

.028

.037

0

92

184

276

368

0.5000 0.6250 0.7500 0.8750 1.0000

10,000 Trials 9,997 Displayed

Forecast: Reliability

Distribution Fitting

.000

.009

.018

.028

.037

0.5000 0.6250 0.7500 0.8750 1.0000

Beta Distribution
Alpha = 20.1525
Beta = 2.7208
Scale = 0.9965

Reliability

Overlay Chart

Certainty Bands - (Percentiles)

0.5000

0.6250

0.7500

0.8750

1.0000

95%

75%

50%

25%

10%

Trend Chart

Target Forecast: Reliability

R2 86.2%

P1E 9.7%

P12 4.1%

P23 0.0%

P2E 0.0%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

Sensitivity Chart

Methodology application and validation on case studies, September 2002 Page 35

probability 21p associated with the arc forming a loop in the model. In view of Table 11 the following
observations are made. The mean system reliability decreases for higher values of transition
probability 21p and is very close to the point estimate. In addition, we see that for higher values of

21p the coefficient of variation is increasing, distribution skewness is moving to the right, and the peak
is decreasing. Due to the space limitations, we show the frequency charts, certainty bands, and
sensitivity charts only for two values of 21p at the end of the spectrum (021 =p and 95.021 =p).

21p Mean Coefficient of
variability Skewness Kurtosis

0 0.7318 0.1225 -0.4458 3.0745
0.25 0.6865 0.1482 -0.3673 3.0230
0.5 0.6246 0.1886 -0.2524 2.7510
0.75 0.5363 0.2736 -0.1850 2.6411
0.95 0.4109 0.4112 0.1334 2.4294

Table 11. Characteristics of reliability distribution for the hypothetical example

It is obvious from Figure 27 that the characteristics of the system reliability distribution are very
sensitive to the values of modeling parameters. We already knew from the point estimates
[Goseva01b] that the system reliability for 95.021 =p is significantly lower that for 021 =p . In
addition, from uncertainty analysis we observe that the reliability distribution for 95.021 =p is widely
spread and has wider certainty bands compared to 021 =p . Also, the parameters contribution to the
variance of system reliability changes significantly. Thus, in the case of 021 =p reliabilities 1R and

2R contribute 96.2% to the variance of system reliability, while in the case of 95.021 =p they
contribute only 29.8%. Even more, when 95.021 =p the highest effect on the system reliability is
coming from transition probability 121 1 pp E −= which contributes 53.7% to the variance of system
reliability. These results clearly illustrate the usefulness of uncertainty analysis and motivate its
systematic use for software reliability prediction.

Methodology application and validation on case studies, September 2002 Page 36

021 =p 95.021 =p

Table 27. Uncertainty analysis for the hypothetical example

Frequency Chart

.000

.008

.016

.024

.032

0

79.75

159.5

239.2

319

0.0000 0.2500 0.5000 0.7500 1.0000

10,000 Trials 10,000 Displayed

Forecast: Reliability

Certainty Bands - (Percentiles)

0.0000

0.2500

0.5000

0.7500

1.0000

95%

75%

50%

25%

10%

Trend Chart

Target Forecast: Reliability

R1 59.9%

R2 36.3%

P1E 2.8%

P12 1.1%

P21 0.0%

P3E 0.0%

P23 0.0%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

Sensitivity Chart

Frequency Chart

.000

.004

.008

.012

.016

0

39.5

79

118.5

158

0.0000 0.2500 0.5000 0.7500 1.0000

10,000 Trials 10,000 Displayed

Forecast: Reliability

Certainty Bands - (Percentiles)

0.0000

0.2500

0.5000

0.7500

1.0000

95%

75%

50%

25%

10%

Trend Chart

Target Forecast: Reliability

P1E 53.7%

R1 21.0%

P12 12.6%

R2 8.8%

P3E 2.5%

P23 1.0%

P21 0.4%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

Sensitivity Chart

Methodology application and validation on case studies, September 2002 Page 37

8. Conclusion

In this report we have presented a methodology for uncertainty analysis of software reliability that
can be applied throughout the software life cycle. Within this methodology, we have used the entropy,
method of moments, and Monte Carlo simulation to analyze how the uncertainty of the parameters
(transition probabilities and component reliabilities) propagates into the estimation of system
reliability. We have applied the proposed methodology and different methods for uncertainty analysis
on the case studies from the European Space Agency and NASA.

Obviously, the uncertainty analysis provides richer measures of software reliability than the
traditional point estimate. These measures can be used for guiding allocation of testing efforts, making
quantitative claims about the quality of the software subjected to different operational usages, and for
reliability certification of component - based software systems. We believe that the uncertainty
analysis of software reliability is not only important but also necessary, especially is we want to make
predictions early in the life cycle and keep track of software evolution.

The main focus of our future work is to explore other methods for uncertainty analysis and
compare them accordingly to different criteria. This comparison will help us to develop sound
guidelines for choosing the most appropriate method depending on data requirements, derived
reliability measures, accuracy of the solution, and scalability with respect to the number of
components.

References

[Adams96] T. Adams, “Total Variance Approach to Software Reliability Estimation”, IEEE Trans.
Software Engineering, Vol. 22, No.9, 1996, pp.687-688.

[Ash 65] R. Ash, Information Theory, John Wiley & Sons, 1965.

[UML] G. Booch, J. Runbaugh, and I. Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1998.

[Chen94] M. Chen, A. P. Mathur, and V. J. Rego, “A Case Study to Investigate Sensitivity of
Reliability Estimates to Errors in Operational Profile”, Proc. 5th International Symposium on Software
Reliability Engineering, 1994, pp.276-281.

[Cheung80] R. C. Cheung, “A User-Oriented Software Reliability Model”, IEEE Trans. Software
Engineering, Vol.6, No.2, 1980, pp.118-125.

[Farr96] W. Farr, “Software Reliability Modeling Survey”, in Handbook of Software Reliability
Engineering, M. R. Lyu (Ed.), McGraw-Hill, 1996, pp.71-117.

[Goseva01a] K. Goseva - Popstojanova and K. S. Trivedi, “Architecture-Based Approach to Reliability
Assessment of Software System”, Performance Evaluation, Vol.45, No.2-3, 2001, pp.179-204.

[Goseva01b] K. Goseva - Popstojanova, A. P. Mathur, and K. S. Trivedi, “Comparison of
Architecture-Based Software Reliability Models”, 12th International Symposium on Software
Reliability Engineering, 2001, pp.22-31.

[Goseva02a] K.Goseva-Popstojanova and S. Kamavaram, “Architecture-Based Methodology for
Studying Sensitivity of Software Reliability to Operational Profile Errors”, Technical Report, March
2002.

Methodology application and validation on case studies, September 2002 Page 38

[Goseva02b] K.Goseva-Popstojanova and S. Kamavaram, ”Uncertainty Analysis of Software
Reliability Based on Method of Moments”, Fast abstract, 13th International Symposium on Software
Reliability Engineering, Nov 2002, to appear.

[Goseva02c] K.Goseva-Popstojanova and S. Kamavaram, ”Uncertainty Analysis of Architecture –
Based Software Reliability”, to be submitted for publication.

[Hahn94] G. J. Hahn and S. S. Shapiro, Statistical Models in Engineering, John Wiley &Sons, 1994.

[Jackson81] P. S. Jackson, R. W. Hockenbury, and M. L. Yeater, “Uncertainty Analysis of System
Reliability and Availability Assessment”, Nuclear Engineering and Design, Vol.68, 1981, pp.5-29.

[Johnson87] M. E. Johnson, Multivariate Statistical Simulation, John Wiley & Sons, 1987.

[Johnson69] N. L. Johnson, S. Kotz, Distributions in Statistics: Continuous Multivariate Distributions,
John Wiley & Sons, 1969.

[Kamavaram02] S. Kamavaram and K. Goseva - Popstojanova, “Entropy as a Measure of Uncertainty
in Software Reliability”, Student paper, 13th International Symposium on Software Reliability
Engineering, Nov 2002, to appear.

[Leung97] Y-W Leung, “Software Reliability Allocation under an Uncertain Operational Profile”,
Journal of the Operational Research Society, Vol. 48, 1997, pp.401-411.

[Martin67] J. J. Martin, Bayesian Decision Problems and Markov Chains, John Wiley & Sons, 1967.

[Miller92] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nikol, B. W. Murrill, and J. M.
Voas, “Estimating the Probability of Failure when Testing Reveals no Failures”, IEEE Trans.
Software Engineering, Vol.18, No.1, 1992, pp.33-43.

[Musa93] J. D. Musa, “Operational Profiles in Software Reliability Engineering”, IEEE Software,
Vol.10, 1993, pp.14-32.

[Musa94] J. D. Musa, “Sensitivity of Field Failure Intensity to Operational Profile Errors”, 5th
International Symposium on Software Reliability Engineering, 1994, pp.334-337.

[Nelson73] E. Nelson, “A Statistical Bases for Software Reliability”, TRW-SS-73-02, TRW Software
series, 1973.

[Pasquini96] A. Pasquini, A. N. Crespo, and P. Matrella, ”Sensitivity of Reliability - Growth Models to
Operational Profile Errors vs. Testing Accuracy”, IEEE Trans. Reliability, Vol.45, No.4, 1996, pp.531-
540.

[Siegrist88] K. Siegrist, “Reliability of System with Markov Transfer of Control”, IEEE Trans.
Reliability, Vol.14 No.7, 1988, pp.1409-1053.

[Singh01] H. Singh, V. Cortellessa, B. Cukic, E. Guntel, and V. Bharadwaj, “A Bayesian Approach to
Reliability Prediction and Assessment of Component Based Systems”, 12th International Symposium
on Software Reliability Engineering, 2001, pp.12-21.

[Wesslen00] A. Wesslen, P. Runeson, and B. Regnell, “Assessing the Sensitivity to Usage Profile
Changes in Test Planning”, 11th International Symposium on Software Reliability Engineering, 2000,
pp.317-326.

[Whittaker93] J. A. Whittaker and J. H. Poore, “Markov Analysis of Software Specifications”, ACM
Trans. Software Engineering and Methodology, Vol.2, No.1, 1993, pp.93-106.

Methodology application and validation on case studies, September 2002 Page 39

[Yin01] L. Yin, M. A. J. Smith, and K. S. Trivedi, “Uncertainty Analysis in Reliability Modeling”,
2001 Annual Reliability and Maintainability Symposium, 2001, pp.229-234.

[gprof] http://www.gnu.org/manual/gprof-2.9.1/html_mono/gprof.html

[ATAC] http://xsuds.argreenhouse.com

